An extended abstract of this paper appeared in the
Proceedings of ACM DIM, Chicago, IL, USA, November 201 1.

(© ACM Press. This is the author’s
version of the work. It is posted
here by permission of the ACM.

A Comprehensive Framework Enabling
Data-Minimizing Authentication

Patrik Bichsel, Jan Camenisch and Franz-Stefan Preiss
IBM Research — Zurich, Switzerland

{pbi, jca, frp}@zurich.ibom.com

ABSTRACT

Classical authentication mechanisms have various drawbacks such
as the weak security properties they achieve, users’ privacy, ser-
vice providers’ data quality, and the necessary protection of the
collected data. Credential-based authentication is a first step to-
wards overcoming these drawbacks. When used with anonymous
credentials, the personal data disclosed can be reduced to the min-
imum w.r.t. a business purpose while improving the assurance of
the communicated data. However, this privacy-preserving combi-
nation of technologies is not used today. One reason for this lack of
adoption is that a comprehensive framework for privacy-enhancing
credential-based authentication is not available. In this paper we
review the different components of such an authentication frame-
work and show that one remaining missing piece is a translation
between high-level authentication policies and the cryptographic
token specification level. We close this gap by (1) proposing an ad-
equate claim language specifying which certified data a user wants
to reveal to satisfy a policy and by (2) providing translation algo-
rithms for generating the anonymous credentials (cryptographic to-
kens) providing the data to be revealed. For the latter we consider
the Identity Mixer and the U-Prove technologies, where we provide
detailed translation instructions for the former.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Access Con-
trols, Authentication, Cryptographic Controls;

K.6.5 [Management of Computing and Information Systems]:
Security and Protection—Authentication

General Terms

Languages, Security

Keywords

Access Control, Policy Languages, Privacy, Anonymous Creden-
tials, Digital Credentials.

@ACM, 2011. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version will appear in the proceedings of the 7th ACM Workshop
on Digital Identity Management (DIM).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DIM’11, October 21, 2011, Chicago, Illinois, USA.

Copyright 2011 ACM 978-1-4503-1006-2/11/10 ...$10.00.

1. INTRODUCTION

Authentication has become an all-embracing requirement in elec-
tronic communication. Virtually any online service, from music
streaming platforms to online bookstores, requires its users to log
in or at least provides added value for registered users. The prevail-
ing method to authenticate is by username and password, a simple
and cheap solution most users are familiar with. At account es-
tablishment time, users often have to provide an extensive set of
personal information. This erodes the users’ privacy and opens the
door for criminals misusing the data, e.g., for identity theft.

Authentication based on anonymous credentials (proposed by
Chaum [11] and implemented by Brands [S] or Camenisch and
Lysyanskaya [8]]) can overcome these security issues by providing
strong authentication, minimizing the personal data required for a
transaction, and ensuring correctness of data revealed, all at the
same time. Unfortunately, this technology is not deployed today as
it is hard to understand and complex to use.

In this paper we aim at removing the barriers for using privacy-
friendly authentication. To this end, we review the different pieces
of a framework for credential-based authentication. This frame-
work consists of (1) a policy language that allows service provid-
ers to express which data about a user they require and which au-
thorities they trust in vouching for such data, (2) mechanisms to
generate a specification about how a user wants to satisfy the pol-
icy, (3) means to generate evidence supporting this specification,
(4) mechanisms for the service provider to verify whether the ev-
idence corresponds to the original policy, and (5) means to verify
the evidence itself.

As a concrete instance of the first component, i.e., a policy lan-
guage, we use the credential-based authentication requirements lan-
guage (CARL) as proposed in [9]. It abstracts the cryptographic
aspects of anonymous credentials into well-known authentication
concepts. We selected this language as it provides the most com-
prehensive support for privacy-preserving features. The third and
fifth components are provided by several credential technologies,
e.g., Identity Mixer (idemix), U-Prove, or X.509 that provide token
generation and verification. However, so far no efforts have been
made to provide the components (2) and (4) and thereby to close
the gap between high-level authentication languages and low-level
technology-dependent specification languages responsible for the
token generation and verification algorithms.

We solve this problem by (a) proposing a high-level claim lan-
guage, (b) showing how this language can be translated into two
specific specification languages of anonymous credentials, namely,
the idemix proof specification and the U-Prove token specification,
and (c) showing how the service provider can verify the different
pieces it received against the policy it had sent. For translating the
claim specification into the idemix proof specification, we show



how the different cryptographic building blocks need to be orches-
trated the generate tokens realizing the different claim elements.
Finally, we discuss how to extend idemix and U-Prove so that all
concepts in the claim language (except disjunction) can be realized.
We believe that connecting the high-level languages to the spe-
cific technologies is a major step towards enabling data-minimizing
credential-based authentication and will foster deployment of the
technology.

Related Work.

While currently no other authentication solution provides the
comprehensive set of privacy features offered by our framework,
the Security Assertion Markup Language (SAML) and WS-Trust as
standards for exchanging certified information must be mentioned.

SAML enables a party to send certified attribute information to
a recipient. Such attribute information is accumulated within so-
called assertions, which are similar to what we call credentials. De-
pending on the underlying certification technology, attributes may
be disclosed selectively, however, there is neither support for at-
tribute predicates nor for concepts such as attribute disclosure to
third parties. Therefore, without extensions, SAML is not suitable
for being used as claim language in data-minimizing authentication
scenarios. Ardagna et al. [1] give a brief intuition on how SAML
may be extended with those missing features. This extended ver-
sion of SAML is an alternative to our proposed claim language,
however, our language makes deriving claims from CARL policies
much easier as it is based on CARL. Further, our language provides
a clear grammar that can directly be used for implementing the lan-
guage. WS-Trust defines protocols to issue, renew and cancel WS-
Security tokens. However, WS-Trust is agnostic w.r.t. the type of
token. Users obtain tokens from so called security token services
(STS) and present those to web services. Web services publish their
security policy by means of the WS-Policy standard. WS-Policy,
however, merely standardizes an empty container that needs to be
filled by concrete policy languages such as CARL. Thus, while we
may use WS-Trust or WS-Policy in a data-minimizing authenti-
cation framework, they do not close the existing gap between the
different levels of languages we currently have.

2. PRELIMINARIES

Anonymous credentials are an important ingredient of privacy-
friendly authentication. Therefore we provide a brief overview
about the concepts and technologies that implement such systems,
borrowing notation from Camenisch et al. [9].

We consider a credential to be a set of attributes together with the
values of a specific entity, which we call the owner of the creden-
tial. Each credential has a type that defines the set of attributes the
credential contains. As an example, a credential of type ‘passport’
would contain the attributes name, address, and date of birth. Fur-
ther, each credential has an entity, the so-called issuer, that vouches
for the attribute values. As the certified values identify the owner,
we also denote the issuer as identity provider (IdP). The reputa-
tion of an issuer as well as the issuance process (e.g., with physical
presence or not) influence the trustworthiness of a credential.

Credentials can be issued using various technologies such as
anonymous credential systems [5| 18], X.509 [12]], OpenlID [15],
SAML [14], or LDAP [19]. Identity providers can vouch for users
directly or by means of certification. That is, the issuer either com-
municates the credential directly to the relying party (i.e., service
provider) or it provides the user with a certified credential she can
then show to the relying party. We call these two approaches on-
line and certified credentials, respectively, and discuss them in the
remainder of this section.

2.1 On-Line Credentials

In the case of on-line credentials, the issuer retains the user’s at-
tribute values and when a user wants to use a credential, the relying
party and the issuer interact directly. We call such credentials ‘on-
line’ as the issuer needs to be online for each transaction of a user.

Let us illustrate how on-line credentials work on the example
of OpenID. An OpenlD provider, which may be seen as identity
provider, stores the user’s attribute values, e.g., in an database. If
the user wants to release any of her attribute values, she relates the
relying party to her issuer, i.e., her OpenID provider. The latter
provides the attributes to the relying party by using a secure chan-
nel to transfer the information. Based on the trust of the relying
party in the OpenID provider as well as the security provided by the
communication channel, it derives the assurance about the commu-
nicated attribute values. Note that this information flow does not
require certified information to be transferred.

2.2 Certified Credentials

Credential technologies such as X.509 or anonymous credentials
use a different approach. They add a certification value to the cre-
dential, i.e., some form of a digital signature. This value allows
a user to prove that the issuer vouches for her credential without
involving the issuer into the communication with the relying party.
From a privacy perspective, this is an important advantage over on-
line credentials as the issuer does not get involved into any trans-
action of a user. As mentioned before, our main interest lies in cre-
dential technologies that support even more privacy-preserving fea-
tures compared to standard certification technology such as X.509.

Anonymous credential system implementations, more specifi-
cally, idemix [18]] or U-Prove [16] offer such additional features.
In essence, they allow a user to obtain a signature from an issuer on
a number of attributes similar to standard certification technology.
The difference in the issuing process being that the issuer does not
get to know the credential the user obtains nor does it learn the at-
tributes that it certifies. This is possible as anonymous credentials
use a blind issuance process.

After a user has obtained a credential she can release the certified
attributes to a relying party. In contrast to other certified credentials
where all attributes need to be shown for verifying the signature,
anonymous credentials enable a user to only release a subset of the
attributes where the signature of the issuer may still be verified by
the relying party. This feature is called selective attribute disclo-
sure. Another advantage of anonymous credentials lies in the fact
that properties about attributes can be proven without revealing the
attributes themselves. For example, using an anonymous credential
containing a user’s date of birth, she can prove the certified state-
ment that she is older than 21 (provided this is indeed the case)
without revealing the exact date itself.

3. DATA-MINIMIZING AUTHENTICATION

In this section we discuss the different components of credential-
based authentication systems [9] and classify them into already ex-
isting and missing components. More concretely, we discuss the
existing ones also in this section and provide the missing compo-
nents in the remainder of this paper.

Figure [ depicts the components of a data-minimizing authen-
tication system and the sequence of an authentication transaction.
Users own certified credentials (in [9]] called “cards”) that were pre-
viously issued to them from identity providers. The figure depicts
how a user wants to use a service (e.g., a teenage chat room) hosted
by some server. For using their service, the server requires the user
to authenticate w.r.t. service-specific authentication policy. An im-
portant aspect of data-minimizing authentication is that the policy



is formulated in terms of properties of the user’s credentials. For
example, a policy could specify that only users who are teenagers
according to a national ID card may use the service.

User Server

Credentials (1) AuthN request

Policy Policies
[ discovery & pre-
evaluation (1a)

ggl‘g:,aﬁon (2) Applicable policy
>

(22)

claims

Claim

selection 2b)

claim

Evidence
generation

Btaleo

(3)Claim, evidence | claim | gjaim

verification

Evidence
verification

(3b)

claim

(4) Success/Failure ;€Vidence

@~

Figure 1: Data-Minimizing Authentication

Upon receiving an authentication request (1) for a service, a
server determines and pre-evaluates the applicable policy (1a) and
sends it to the user (2). During this pre-evaluation, references to
static content such as the current date are resolved to generate the
policy sent. Having received the policy, the user’s system deter-
mines which claims, i.e., statements about a subset of attributes of
one or more of the available credentials, can be made that fulfill
the given policy (2a). For example, a policy requiring the user to
be a teenager according to an ID card may be fulfilled by means
of a user’s national ID card or her student ID. Thereby, the state-
ment of being a teenager can be made by disclosing the exact date
of birth or by a (cryptographic) proof that the birth date lies within
the required range. Indeed, the claims that a user can make depend
on the capabilities of the underlying credential technology. The fa-
vored claims are then selected (2b) interactively by the user [3] or
automatically by a heuristics capable of finding the most privacy-
preserving one. Once the claims are defined, the specific credential
technologies have to be instructed to generate the necessary creden-
tials (or tokens) that satisfy these claims. To this end, a technology-
specific proof specification (e.g., an idemix proof specification or
a U-Prove token specification) must be generated. Based on this
specification, technology-specific evidence is generated (2c). The
claim is then sent together with the accompanying evidence to the
server (3) who verifies that the claim implies the policy (3a) and
checks whether the claim’s evidence is valid (3b). Depending on
the credential technology, the evidence may be generated and ver-
ified with or without the credential issuer being involved. After
successful verification, the user is authenticated (4) as someone ful-
filling the authentication requirements dictated in the policy. The
strength of anonymous credential systems lies in the fact that the
server does not learn more than what it strictly requested. For ex-
ample, the only information the server learns about the user is the
fact the she or he is indeed a teenager according to an ID card is-
sued by a trusted identity provider. Thus, the user has minimized
the information revealed about herself w.r.t. the given authentica-
tion policy. Ideally, the policy also reflects the minimal information
necessary for conducting the scenario at hand.

For implementing such authentication scenario, at least three
types of languages are required. First, a policy language to ex-
press the server’s authentication requirements. Second, a claim
language to make statements about (attributes of) the user’s cre-

dentials, and third, a technology-specific language that defines how
the evidence is generated. Camenisch et al. [9]] provide a suitable
policy language with their credential-based authentication require-
ments language (CARL, cf. Section B.1). The currently existing
idemix proof specification [2] language is a technology-specific
language for generating evidence (cf. Section[3.2). The language
specifying claims made by the user, however, is missing. In this
paper, we provide this missing piece by defining such language on
the basis of CARL. We also show how to extend the currently ex-
isting idemix proof specification language to make it as expressive
as our claim language.

Given this new claim language, in Section 4] we further describe
how technology-specific claims can be generated and verified for
a given policy. In Section [3] we explain how evidence can be gen-
erated and verified for a claim formulated in the specified claim
language with a focus on anonymous credential technologies.

3.1 CARL Policy Language

We briefly introduce the CARL policy language [9] as it is the
basis for the claim language that we define in Section[4.2] The lan-
guage allows for expressing authentication requirements in terms of
credentials in a technology-agnostic way. One kind of requirement
states a predicate over the credential’s attributes. The predicate is a
Boolean expression that allows for applying logic, comparison and
arithmetic operators to attributes, constants or further expressions.
Consider the following example policy for a car rental service that
illustrates the language features relevant for us:

01: own dl:: DriversLicense issued-by DEPTMOTORVEHICLES
02: own mc:: MemberShip Card issued-by CARRENTALCO

03: own cc:: CreditCard issued-by AMEX, VISA

04: own [i:: LiabilityInsurance issued-by INSURANCECO

05: reveal cc.number

06: reveal li.pNo to ESCROWAGENT under ‘in case of damage’
07: where dl.issueDate < dateSubtrDuration (today(), P3Y") A

08: li.guaranteed AmoutUSD > 30.000 A
09: (me.status == ‘gold’ V mc.status == ‘silver’) A
10: dl.name == li.name

11: sign ‘I agree with the general terms and conditions.’

According to this policy, authentic users (a) have their driver’s
license for at least three years, (b) have gold or silver membership
status with the car rental company, (c) reveal their American Ex-
press or Visa credit card number, (d) reveal the policy number of the
driver’s liability insurance — with a coverage of at least thirty thou-
sand dollars — to a trusted escrow agent who may disclose this num-
ber only in case of damage to the car, and (e) consent to the general
terms and conditions. Users who fulfill this policy with idemix ev-
idence reveal — aside from their credit card number — merely the
facts that (1) the credentials they own do fulfill the stated require-
ments and (2) they indeed disclosed the proper values to the escrow
agent. In particular, the server neither learns the exact values of the
attributes occurring in the policy’s where clause nor the number of
the insurance policy. However, despite the users’ preserved privacy,
they are accountable in case of damage due to the information the
escrow agent learned. Note that identities such as VISA represent
aliases (e.g., to cryptographic keys) that are resolved by the cre-
dential technology used to fulfill the policy. We refer to Sections 4
and 5 of [9]] for more detailed information on syntax and semantics
of CARL, respectively.

3.2 Idemix Proof Specification

The idemix anonymous credential system consists of a number
of cryptographic building blocks including signature scheme, en-



cryption, and commitment schemes. Combined they can achieve
the different features of the idemix authentication system. The
components as well as their combination is driven by specifica-
tion languages that abstract from cryptographic details [2]]. Thus,
to generate an idemix credential, i.e., the evidence, that fulfills a
given claim, we have to translate claims into the idemix proof spec-
ification language. We summarize the main features that idemix
provides and that can be realized using the idemix proof specifi-
cation. One major advantage of anonymous credentials over other
credential technology is their ability to disclose attributes selec-
tively. The language supports this feature by specifying for each
attribute of each credential whether it should be revealed or not. A
further advantage is that they allow a user to prove that attributes
encoded in different credentials fulfill a specified predicate by so
called cross-credential proofs.

Note that there is a gap between what has been proposed as fea-
tures for idemix in the scientific community (e.g., limited spend-
ing [[7]), what is specified and implemented [18]], and what can be
expressed with the language proposed in [2]. We will highlight
what predicates can be expressed by the language as this is the most
limited set. Those predicates are (1) equality among attributes, (2)
inequality between attributes and constants, and (3) set member-
ship proofs. First, equality among attributes can cryptographically
be proven by using the same values for both attributes within a
zero-knowledge proof. The proof specification achieves this fea-
ture by using one so-called identifier for several attributes. Second,
inequalities allow the user to specify that an attribute is smaller
or larger than some constant. In fact, the language supports the
operators <, <, > and > and provides a distinct construct for the
specification of the attribute, the constant, and the operator. Third,
the language specifies a construct to define attributes that should be
used in a set membership proof. Set membership proofs are only
available for specially encoded attributes, where the idemix imple-
mentation uses prime encoded attributes as proposed by Camenisch
and Gross [6].

In addition to the given predicates the library implements con-
cepts such as disclosure of attributes to a third party, or signature
on messages. The former is realized using verifiable encryption
as proposed in [10] and the latter amounts to signing the message
using the Fiat-Shamir heuristic [13]. As those features are not
credential-specific, they are addressed by dedicated statements in
the proof specification language. Furthermore, the library imple-
ments that idemix proofs can be tied to pseudonyms. However, this
concept is currently not reflected in our claim language.

Finally, the proof specification language offers the creation of
commitments as well as representations. Both are cryptographic
objects that can be employed to implement high level functionality.
In this paper we show how those constructs can be used to imple-
ment arbitrary arithmetic statements about certified attributes. For
example, in FigureRlwe provide the idemix proof specification cor-
responding to the claim described in Section[£.2] Note that we only
indicate the attributes required in the claim.

3.3 Privacy Benefits

The choice of anonymous credential systems as credential tech-
nology lies in their privacy benefits over competing technologies.
We provide an overview of the privacy features and distinguish
again between on-line and certified credentials. Depending on the
definition of privacy, on-line credentials may have many advan-
tages. That is, if we only care about a user’s privacy w.r.t. to the
relying parties, they are a feature-rich and privacy-friendly variant.
Their main drawback is that the issuer of the credential (i.e., the
IdP) is involved in each transaction, i.e., it provides unlinkability

<ProofSpecification [...]>
<Declaration>
<AttributeId name="idl" proofMode="unrevealed"
type="string"/>
<AttributeId name="id2" proofMode="unrevealed"
type="date" />
<AttributeId name="id3" proofMode="revealed"
type="string"/>
<AttributeId name="id4" proofMode="revealed"

type="int" />
<AttributeId name="id5" proofMode="unrevealed"
type="int" />
<AttributeId name="idé" proofMode="unrevealed"
type="int" />
</Declaration>
<Specification>
<Credentials>

<Credential ipk="http://www.DeptMotorV.com/ipk.xml"
credStruct="http://www.un.org/license/driver.xml"
name="kdsfjk230fsefj32">
<Attribute name="name">idl</Attribute>
<Attribute name="issueDate">id2</Attribute>
[...]

</Credential>

<Credential ipk="http://www.CarRentalCo.com/ipk.xml"
credStruct="http://www.CarRentalCo.com/memCard.xml"
name="oiwd26ia3m232ewo">
<Attribute name="status">id3</Attribute>
[...]

</Credential>

<Credential ipk="http://www.visa.com/ipk.xml"
credStruct="http://www.imf.org/creditcard.xml"
name="kdf92fjiu01£3j028">
<Attribute name="number">id4</Attribute>
[...]

</Credential>

<Credential ipk="http://www.InsuranceCo.com/ipk.xml"
credStruct="http://www.InsucanceCo.com/policy.xml"
name="028dkd93rdlra039">
<Attribute name="name">idl</Attribute>
<Attribute name="pNo">id5</Attribute>
<Attribute name="guaranteedAmountUSD">id6</Attribute>
[...]

</Credential>

</Credentials>

<Inequalities>
<Inequality pk="http://www.DeptMotorV.com/ipk.xml"
operator="leq" secondArgument="76168">id2
</Inequality>
<Inequality pk="http://www.InsuranceCo.com/ipk.xml"
operator="geq" secondArgument="30000">id6
</Inequality>
</Inequalities>

<VerifiableEncryptions>
<VerifiableEncryption name="7jd2e0asfdkkj3rggl"
pk="http://www.EscrowAgent.com/vepk.xml"
label="in case of damage">id5</VerifiableEncryption>
</VerifiableEncryptions>

<Messages>
<Message name="d0fsdfkii2fucxzkl">I agree with the
general terms and conditions.</Message>
</Messages>
</Specification>
</ProofSpecification>

Figure 2: Idemix proof specification that realizes the example
claim specified in Section[d.2]

when using a credential multiple times only w.r.t. the relying par-
ties. In addition, features such as proving predicates that involve
credentials issued by different IdPs can only be achieved using spe-
cial protocols between those IdPs. Table [Tl shows that, except for
the generation of the evidence independently from the IdP, all pri-
vacy features are provided by on-line credentials. Note that the



restrictions on unlinkability and cross-credential proofs are due to
the reasons mentioned before.

Certified credentials such as X.509, idemix, or U-Prove creden-
tials provide a significant advantage over on-line credentials. They
allow a user to proof possession of the credential without involv-
ing the IdP, which provides privacy w.r.t. to the issuer that an on-
line credential can never provide. However, when it comes to the
privacy w.r.t. to the relying party, certified credentials cause some
difficulty. On one hand, protection of the user’s privacy demands
that the latter can change the credential to make it fit for a given
purpose. On the other hand the issuer needs to make sure that only
specific changes to the credential can be made, i.e., the semantics
of the credential must remain unchanged.

Feature On-line X.509 U-Prove Idemix
Message Signatures v v v v
Proof of Ownership v v v v
Evidence w/o IdP v v v
Selective Disclosure v v v
Predicate Proofs v v v
Disclosure to Third-Parties v () v
Limited Spending v v v
Cross-Credential Proofs W) " f
Unlinkable Multi-Use W) v

Table 1: Certification technology feature comparison. v': Sup-
ported. (v'): Limited support. v,: Possible and described in
the literature, but currently not implemented.

Table [l shows that X.509 credentials only support basic signa-
tures and ownership proofs. As mentioned before they do allow
to generate this proof (or evidence) without involving the IdP. The
reason for providing such limited set of functionality lies in the fact
that a user cannot adapt the cryptographic signature.

Implementations of anonymous credentials, such as idemix or U-
Prove, provide more flexibility in terms of privacy protection. Both
allow a user to selectively reveal attributes that have been certified
in a credential (cf. Selective Disclosure in Table[T)). U-Prove strives
for simplicity, thus, it currently does not provide further privacy
protecting features even though the underlying signature scheme
would support further features. The idemix libraryE] is currently
the most advanced implementation of a privacy-preserving authen-
tication system. In addition to all previously mentioned features it
supports proofs of predicates over attributes, e.g., proving equal-
ity among attributes, and other features described in Section 3.2
Using verifiable encryption, it allows for conditionally disclosing
attributes to a (trusted) third party. Limiting the possibilities of
spending a credentials such as only allowing a credential to be used
only k times within a certain time interval as proposed in [7] is
currently not implemented but it could be added to the current im-
plementation. The distinction between idemix and U-Prove boils
down to the fact that an individual idemix credential can be used
multiple times without the resulting evidence becoming linkable.
This is referred to as Unlinkable Multi-Use in Table[l

4. CLAIM HANDLING

We compare in Section[£ldifferent ways on how an authentica-
tion policy can be fulfilled . The decision on which way is chosen is
mainly driven by the capabilities of the underlying credential tech-
nology. Therefore, those capabilities have to be known and con-
sidered at the time of claim generation. No matter which way the

"http://www.zurich.ibm.com/~pbi/identityMixer_gettingStarted/

policy is fulfilled, however, an adequate claim language is needed
to express the statements made about the credential’s attributes.

In general, claims may be accompanied with evidence from dif-
ferent credential technologies. However, requirements across dif-
ferent credentials, so called cross-credential requirements cannot
be proven using different credential technologies. Although the
claim language itself is independent from technology, the expressed
statement must be in accordance with the capabilities of the under-
lying credential technology. In this section we describe how to gen-
erate claims for the anonymous credential technologies idemix and
U-Prove. Naturally, of interest are only claims that logically imply
the policy, therefore we define claim semantics in Section .21

4.1 Methods To Fulfill A Policy

An authentication policy can be fulfilled in several ways. Intu-
itively, in case a policy requires the user to show that she owns a
driver’s license, we can see that the user can comply by provid-
ing a proof of such statement or by simply revealing the driver’s
license information as we do today. On a more conceptual level
we can distinguish three methods for complying with a given au-
thentication policy. First, using non-certified credentials a user can
request a claim that closely matches the given policy. Second, using
a standard certified credentials as introduced in Section 2] allows a
user to generate a claim without involvement of the IdP. However,
this technology lacks the ability to adapt claims to a given policy.
Third, privacy-preserving certified credentials such as anonymous
credentials enable a user to generate a claim specific to a given
policy. The privacy implications on each of those options are dis-
cussed in more detail in Section[3.3] For all three methods we need
a claim language to describe what the content or structure of gen-
erated evidence is. Therefore, we need a claim language and define
is now.

4.2 Claim Language

Analog to servers who express their authentication requirements
in a policy language, users make authentication statements in a
claim language. A claim precisely describes the statements that a
user proves by means of technology-dependent evidence. In partic-
ular, claims serve as technology-independent input to technology-
specific evidence generation modules. Although such claim lan-
guage is a crucial building block for data-minimizing authentica-
tion systems, no adequate claim language has been proposed yet.

The claim language we propose allows a user to state which cre-
dentials she owns and what properties those credentials have. Such
properties are expressed in terms of a logical predicate over the
credential’s attributes. Additionally, the language allows users to
consent to a certain message or to disclose attributes to a (trusted)
third party. The language we propose is intended as counterpart to
the CARL policy language (cf. Section[3.T). In fact, most language
constructs can be reused, however, three concepts need special at-
tention.

First, for credential ownership (i.e., ‘own’ lines) CARL policies
allow for specifying a list of issuers with disjunctive semantics,
i.e., ownership can be proven for any of those issuers. As it must
be unambiguous for the underlying credential technology which
cryptographic key to use for generating the claim’s evidence, the
claim language just states one issuer. Second, disclosure requests
for attributes that are to reveal to the server (i.e., ‘reveal’ lines
without ‘to’) are only meaningful in policies. A claim must rather
fulfill those requests by disclosing the corresponding attribute val-
ues. In our language, such attribute disclosure is addressed by stat-
ing equality between the respective attribute and its value. Third,
CARL supports basic variables that may act as substitute for a num-


http://www.zurich.ibm.com/~pbi/identityMixer_gettingStarted/

ber of syntax elements. While being useful in policies, such vari-
ables provide no benefit to a claim language. Therefore, the only
kind of variable we consider are attribute variables which reference
credential attributes.

Figure [3] shows the (left factored) grammar of our claim lan-
guage. Apart from above mentioned restriction, credential owner-
ship is expressed with ‘i own’ lines in the same way as ‘own’ lines
in CARL. We prefix the main keywords with ‘i’ to stress the claim’s
active statement character. The attribute predicate is expressed after
the ‘where’ keyword in terms of a Boolean expression. Beside the
standard operators of logics (A, V and —), also equality, inequal-
ity (#, >, etc.) and arithmetic operators may be applied to ex-
pressions. Expressions may further be (1) attributes qualified with
the ID of a previously declared credential (e.g., dl.issueDate),
(2) constants of data type String, Boolean, Date (e.g., 1984/01/01),
Float and Duration (e.g., P3Y represents a period of three years),
as well as (3) function calls with expressions as arguments. A type
system equivalent to the one of CARL [9, Appendix C] ensures that
the predicates are type correct w.r.t. the data types defined in the
credentials’ types and the function definitions. The message to sign
is given after the ‘i sign’ keyword. It must be a constant expression
that evaluates to data type string. To disclose a list of terms to a
third party, the ‘i reveal’ keyword is used. Although CARL also
provides syntax to address limited credential spending, we do not
consider this concept here. Consider the following example claim:

01: i own dl:: DriversLicense issued-by DEPTMOTORVEHICLES
02: i own mc:: MemberShipCard issued-by CARRENTALCO

03: i own cc:: CreditCard issued-by VISA

04: i own li:: LiabilityInsurance issued-by INSURANCECO

05: where dl.issueDate < dateSubtrDuration (today(), P3Y) A

06: li.guaranteedAmoutUSD > 30.000 A
07: mc.status == ‘silver’ A dl.name == li.name N
08: cc.number == 1234 5678 9012 3456’

09: i reveal li.pNo to ESCROWAGENT under ‘in case of damage’
0: i sign ‘I agree with the general terms and conditions.’

—_

This claim is one possible counterpart to the policy given in Sec-
tion 311 Its intent is to fulfill the choices given in the policy with a
visa credit card and a membership card of silver status. Addition-
ally, a concrete credit card number is revealed. The functions and
their interpretations are specified in an ontology that is commonly
agreed upon by the user and the server.

Note that the example claim reveals that the membership status
is silver, rather than just saying that it is silver or gold. In general,
the latter would be preferable, however, current implementations
do not yet allow to prove disjunctive statements (cf. Section [3).
Further note that the user may be involved in the selection of the
most desirable claim in case (1) multiple credentials are possible to
use according to policy (e.g., multiple credit cards), or (2) multiple
claims result from one assertion, e.g., because a credential technol-
ogy does not support disjunctive statements.

4.3 Claim Generation

When a user u receives the policy applicable to her authentica-
tion request (cf. Step 2 in Figure[I), is has to be determined which
claims can be made w.r.t. her credential portfolio B3,,. To do so,
the possible options of assigning credentials from 33, to all of the
credential variables occurring in the policy are calculated. We call
one such option a credential assignment. An important aspect of
the claim generation component is to determine all possible cre-
dential assignments of a user for a given policy. This is to enable
the user to select the most privacy-preserving assignment. In case

Claim = PrfOfOs™ [‘where* Exp] Discl* [i sign‘ Exp] ;

PrfOfOs = ‘i own‘ CredVar ‘:* URI ‘issued-by‘ URI;
Discl = ‘ireveal’ Term (‘,¢ Term)* ‘to‘ URI;
CredVar = 1ID;
AttrVar = CredVar ‘. ID;
Term = AttrVar

| String | Float | Date | Bool | Duration ;
Exp = DisjExp;
DisjExp = ConjExp (‘V* ConjExp)*;
ConjExp = EquExp (‘A EquExp)™;

EquExp = InEquExp (‘=="‘InEquExp)*;
InEquExp = AddExp ((‘# | ‘<‘|>¢]‘<|>‘) AddExp)*;
AddExp = MultExp ((‘+¢| ‘—‘) MultExp)™;
MultExp = NegExp ((*-* | ‘+*) NegExp)™;
NegExp = [—‘] SigExp;
SigExp = [‘+‘|‘—‘] PrimExp;
PrimExp ‘(“Exp )"
Term

ID“(* [Exp (*,“ Exp)"] )3
ID Alpha Alphanum™ ;

Alpha and Alphanum are alphabetic and alphanumeric characters.
The URI after the ‘issued-by’ keyword must map to a identifier that
the underlying credential technology can resolve. The URI ater the
‘> keyword must map to a credential type. IDs must be different
from the used keywords.

Figure 3: Claim Language Grammar

no credential assignments are found, the user’s credentials are not
sufficient to fulfill the policy.

Every credential assignment found by above mentioned algo-
rithm is then transformed into a claim. The transformation, how-
ever, is dependent on the technologies of the assignment’s creden-
tials. This is due to the varying capabilities the different credential
technologies have (cf. Section[3.3)). In case all credentials in the as-
signment are of the same technology, the assignment is transformed
to a technology-specific claim according to the idemix and U-Prove
restrictions given in the following subsections, respectively. In gen-
eral it is possible to also support the case where the assignment’s
credentials are of different technologies. However, in this work this
is out of scope.

4.3.1 Idemix Claim Restrictions

To generate the claims for which evidence shall be generated
with idemix, one has to account for its capabilities. The current
implementation of idemix supports most of the possible claim state-
ments. With the extension to the proof specification we discuss in
this paper, we are able to support all statements except those that
contain disjunctive expressions (cf. Tables [[land B). Thus, when
generating a claim for which evidence with idemix shall be gener-
ated, one has to proceed as follows. The policy’s predicate is first
transformed to disjunctive normal form (DNF) and separate claims
are generated for all monomials (also called conjunctive clauses,
or conjunctions of literals) of the DNF that (a) hold with respect
to the given credential assignment, and (b) resemble the given pol-
icy (apart from the predicate being only the monomial, not the full
predicate). It can assumed that at least one of those monomials
holds, otherwise the assignment finder component would not have
produced this assignment. Clearly, using a monomial of the predi-



cate’s DNF as predicate in the claim is less privacy-preserving than
stating the full predicate as it is disclosed which disjunct is proven.
For creating a claim that resembles a policy, put simply, a ‘copy’
of the policy is used as claim and the constraints on the claim lan-
guage as defined in Section 2] are enforced. According to those
constraints, every credential declaration must have exactly one is-
suer. This issuer is unambiguously defined as the issuer of the cre-
dential that is assigned to the corresponding credential variable via
the credential assignment. Further, all attributes, for which a disclo-
sure request exists in the policy, are disclosed by adding an equality
expression between the corresponding attribute and its value as ad-
ditional conjunct to the monomial.

4.3.2 U-Prove Claim Restrictions

The latest specification of U-Prove [16] allows for selective dis-
closure of attributes, signing messages, and proof of ownership, but
does not support features such as predicate proofs and disclosure to
third parties (cf. Tables[Iland2). A policy that includes predicates
over attributes or disclosure to third parties, can be fulfilled if all
these attributes are fully disclosed to the relying party. To this end,
one needs to process the policy’s predicate and transform it into a
claim predicate in which all attributes occurring in the predicate are
selectively disclosed. Claims including cross-credential statements
and limited spending cannot be fulfilled with the current specifica-
tion of U-Prove.

4.4 Claim Verification

A server receiving a claim with accompanying evidence from
a user verifies whether this claim indeed implies the initially pro-
vided policy (cf. Step 3a in Figure[I). A claim implies a policy if
all of the following five conditions hold.

(1) For each disclosure request in the policy there is a corre-
sponding attribute — with the same credential variable and the same
attribute variable — disclosed in the claim. (2) The predicate of the
policy implies the predicate of the claim’s statement. To account
for technologies that fulfill the policy’s predicate by disclosing all
attributes occurring in it (e.g., U-Prove), all the attributes of the pol-
icy’s predicate that are disclosed in the claim are substituted with
the revealed values. Then, if the resulting predicate is constant, it is
verified whether it evaluates to true. If so, the predicate is fulfilled.
Otherwise the claim does not imply the policy. (3) The creden-
tial declarations of the claim’s statement imply those of the policy.
A claim’s credential declaration implies a policy’s declaration if
(a) their credential variables are equal, and (b) their credential types
are equal (for hierarchical credential types, this might be extended
to checking whether the claim’s credential type is a subtype of the
policy’s credential type), and (c) the issuer of the claim’s declara-
tion is contained in the list of issuers of the policy’s declaration.
(4) In case the policy requires the signature of a message m, the
claim must also contain an ‘i sign’ statement for m. (5) The set of
terms disclosed to third party Sp in the claim must be a superset of
the set of terms that is required to be disclosed to Sy in the policy.

S. EVIDENCE HANDLING

In this section we show how idemix and U-Prove evidence is
generated and verified for a given claim. In particular, this section
elaborates on the components (2¢) and (3b) of Figure [Tl Note that
in the evidence verification we only handle claims that have previ-
ously been generated (cf. Section [£3)) and we assume that claims
adhere to the restrictions of the respective technology.

For transforming the claim to semantically equivalent evidence,
we break our claim language syntax down to a set of building
blocks. We therefore only need to show how evidence is generated
for those building blocks.

5.1 Claim Building Blocks

In Table 2] we show the building blocks of our claim language
and detail which are supported by the current implementations of
idemix and U-Prove. For idemix, we distinguish between exist-
ing support and support introduced through extensions we propose
in Section [6] Of particular interest are the building blocks for at-
tribute predicates. We show how every attribute predicate can be
rewritten in terms of building blocks. In particular, any attribute
predicate with arbitrary logical nesting and negations can be trans-
formed to disjunctive normal form (DNF), i.e., \/, A ¢i;, where
£;; is an atomic expression (AtomicExp in Table 2) with no fur-
ther logical structure. In DNF negations occur only immediately
before atomic expressions. Such negations are eliminated by in-
verting the respective operators (e.g, —(a < b) mapstoa > b).
Further, expressions with no further logical structure that do not
match any of the building blocks 6 — 15 can be rewritten to do so.
For example, the expression (a.b + c.d) < e.f can be rewritten
to (a.b + c¢.d) — e.f < 0 which is building block 14. Atomic
expressions that are constant cannot be proven using any credential
technology but they can be trivially evaluated.

Note that we distinguish three cases for equality, not equal to,
and inequality although those could further be reduced. For ex-
ample, blocks 6 and 7 are instances of 8. The reason being that
typically simpler cases can be implemented more efficiently and
are already present, while the most general case may not be imple-
mented. For instance, block 6 and 7 are currently implemented in
idemix, but block 8 is not.

5.2 Idemix Evidence

To generate evidence for a claim with the idemix technology, we
assume it only contains expressions that are supported in the imple-
mentation extended with our proposals as described in Section
In particular, for idemix this means that a claim must not contain
disjunctive expressions, while all other constructs are supported.
As the current idemix implementation does not support proving
of disjunctive expressions, the corresponding idemix claim gener-
ator (cf. Section £.3.T)) only produces claims that have monomials
(i.e., conjunctions of Boolean literals) as their statement’s formula
(or the formula is null). Thus, we assume that the statement of the
given claim is a monomial and determine the individual Boolean
literals of the statement’s formula. In case the formula is null, the
list of Boolean literals is empty. Every literal of the monomial is
an instance of one of the expression patterns described in the fol-
lowing paragraphs, which describe how a semantically equivalent
proof specification can be created.

5.2.1 Generating ldemix Evidence

This section we describe how to generate idemix-specific evi-
dence. We show an overview of the supported features, including
the ones that require extension to the idemix proof specification, in
Table 2]

Proof of Ownership (incl. Selective Disclosure).

A proof of ownership is the basic feature of certified creden-
tials. The idemix proof specification provides this functionality
for each credential included in the proof specification using the
Credential tag. This tag also allows for referring to the cre-
dential in the rest of a proof specification.

Each attribute of any credential statement must defined a cor-
responding identifier using the AttributeId tag. The attribute
identifiers have an explicit possibility to define whether a linked at-
tribute should be revealed or remain unrevealed, which we can use
to match the definition in the claim. In addition, they are used to



# Type Claim Syntax Examples Idemix U-Prove
1 Proof of Ownership i own c::7 issued-by I i own c::CreditCard issued-by Visa v v
2 Message Signatures i sign m i sign ‘terms and conditions’ v v
3 Disclosure To Third Parties i reveal c.a to TTP under £ ireveal li.pNo to ECRAGT under ‘damage’ v’
Attribute Predicate where ¢ See rows 4 - 15
4 Logics AtomicExp A AtomicExp (a.b == c.d) A (e.f <1984/01/01) v
5 %% AtomicExp V AtomicExp  (a.b == c.d) V (e.f < 1984/01/01)
6 Equality a.b==cd v
7 . . a.b == ConstExp a.b == ‘Chicago’; a.b == 1984/01/01 v v
8 (incl. Selective Disclosure) NonConstExp == ConstExp (a.b + 2-c.d) == T; log(a.b) == 7 Vi
9 a.b# c.d Vi
10 Not Equal To a.b # ConstExp a.b #7;a.b # ‘male’; a.b # 1984/01/01 V4
11 NonConstExp # ConstExp  (a.b+2-c.d) #7 Vi
12 a.b Op c.d a.b<cd;ab>cd Ve
13 InEquality a.b Op ConstExp a.b > 8, a.b>1984/01/01 v
14 NonConstExp Op ConstExp (a.b — 2 c.d) > 25 Vi
15 FunctionCall f(NonConstExp, .. .) charAt(2, a.b) Func.-Dep. Func.-Dep.

Table 2: Claim Building Blocks. v': Supported in current implementation. v/; : Supported with the extensions described in Section[6
AtomicExp: Any of the building blocks 6 — 15. ConstExp: Expression not containing attribute variables. NonConstExp: Expression

containing at least one attribute variable.

define equalities among attributes, which is possible even if they
are encoded into different credentials. Thus, we have to use the
same attribute identifier for all attributes that the claim states to be
equal, where attribute equality can only be proven if the types of
the attributes match.

Message Signatures.

A policy may request a user to sign a message, which will be
reflected in a claim according to the example in Section @21 The
idemix proof specification provides a dedicated Me s sage element,
which allows for a direct translation from the claim.

Attribute Disclosure to Third Parties.

Conditional attribute disclosure to third parties is also included
into the proof specification as a distinct primitive. Consequently, it
can be almost employed as directly as message signatures. The es-
sential difference is that a verifiable encryption requires the user to
specify the pubic key of the trusted entity, which she has to (authen-
tically) retrieve before being able to create the encryption. Further-
more, she needs to add the condition under which the decryption is
released to the VerifiableEncryption element.

Note that to attain a transaction binding, i.e., the binding among
all attributes that are verifiably encrypted to one another, the ver-
ifiable encryption needs to contain all the transaction relevant at-
tributes. This is of importance to make sure that none of the par-
ties in the accountability transaction can change the context, i.e.,
misuse the verifiable encryption. While the claim language allows
for disclosing a list of terms, i.e., attribute references or constants,
the proof specification does not currently do so. Thus, for every
attribute reference we create a separate verifiable encryption. Dis-
closure of constants is currently not supported by the proof specifi-
cation.

Attribute Predicates.

Predicates over attributes range from simple expressions that can
be directly achieved using a dedicated element in the proof speci-
fication to almost arbitrarily complex statements, which need ex-
tensions to the proof specification language to be expressable. We
explain the transformations for the cases mentioned in Table 2]in

Section[3.2.2] Note that attribute predicate proofs over revealed at-
tributes are not supported. Therefore, all the predicate’s attribute
variables whose values are revealed have to be replaced with their
disclosed values.

5.2.2  Generating Attribute Predicate Evidence

In the following, we introduce the mappings of a claim’s attribute
predicate to an idemix proof specification. We refer to Section[6]for
further details.

Equality.

Details of equality predicates in a claim are given on Line 6-8 in
Table 2l As already mentioned, the proof specification expresses
equality among attributes (Line 6) by using the same attribute iden-
tifier. Proving equality between an attribute and a given constant
(Line 7) amounts to revealing the attribute value. Note that the ver-
ifier needs to check whether the value stated in the claim actually
corresponds to the revealed value. Finally, equality statements in-
volving arithmetic expressions have to be mapped to commitments
and representations. We show a concrete example of the equality
a.b- c.d == e.f in Section[6.2]

Not Equal To.

Statements that express that one value is unequal to another one,
are generically hard to proof as technology like idemix is built
for proving equality of elements. Still, we can prove a statement
a.b — c.d # 0 rather than a.b # c.d. While maintaining seman-
tic equivalence we manage to change the statement such that the
verifier can check it. This results as we handle the attributes as ex-
ponents and the verifier can check that the resulting exponent not
being equal to zero.

Using this rational we can transform the statements of Line 9
and 10 into statements that are not equal to zero, i.e., a.b — c.d #
0,a.b — ConstExp # 0. Consequently, using commitments and
representations in the generalized form as we explain in Section[6.2]
we can express “Not Equal To” statements.

InEquality.
The inequality operators <, <, >, and > are implemented using
Boudot [4] interval proofs. This concept profits from a dedicated



element called Inequality in the idemix proof specification. A
limitation w.r.t. the claim language is that only integers and dates
(which are encoded into integers) are supported.

In addition, the implementation only allows for unrevealed at-

tributes to be compared with (1) constants, or (2) revealed attributes.

For instance, it does not allow to express a formula of the form in-
dicated in Line 12 in Table ] i.e., a.b < c.d. Such expression
where both attributes are unrevealed, needs to be transformed into
a.b — c.d < 0. We use commitments to each of the attributes to
build a representation that contains the subtraction of the attributes,
i.e., a.b — c.d. Using this value we can proceed and prove an in-
equality statement as if the value a.b — c.d were a regular attribute
value directly certified by a credential.

Non-constant Expressions.

In the Lines 8, 11, and 14 of Table 2] the non-constant expres-
sions (NonConstExp) may either be an arithmetic expression or a
function call. We address the former by generating commitments as
well as representations such that the desired value, e.g., a.b — 2c.d,
is available as if it were a regular attribute in a credential. The ex-
ample in Section[6.2]provides an intuition on how the commitments
and representations have to be generated.

Support for function calls heavily depends on the concrete func-
tion. Subsequently, each function would require a dedicated map-
ping and possibly even special algorithms for the functionality to be
supported. We envision special functions only to become available
once a convincing use case for a particular function is available.

5.2.3  Verifying Idemix Evidence

Once the idemix evidence has been generated and transmitted
to the server, the latter needs to translate the user-provided claim
into a proof specification the same way the user did. As a result
it will get an idemix proof specification that, together with the evi-
dence itself, serves as input to the idemix library (cf. Figure[I). The
first step of the verification consists of the idemix library verifying
the cryptographic properties of the evidence. The second step con-
sists of the verification of the disclosed attributes, which have to be
matched with the constants used in the claim. A particularity of the
idemix implementation lies in the fact that strings currently are en-
coded by employing a hash function. Thus, the disclosed attributes
can, in case of strings, not be mapped to their original value, thus,
they have to be transmitted from the user to the verifier. Still the
verifier needs to assert that the transmitted values match the values
revealed in the evidence.

5.3 U-Prove Evidence

To fulfill a claim with U-Prove, our claim language needs to be
translated into a U-Prove token as specified in the U-Prove WS-
Trust profile [[17]]. This profile defines which attributes are revealed
(in WS-Trust attributes are called claims). Thus, to generate U-
Prove evidence in our system, we would need to translate our claim
into a set of U-Prove WS-Token specifications, one for each cre-
dential (U-Prove token) that shall be used. These specifications
then define the attributes that are revealed. Finally, the different
U-Prove tokens generated according to these specifications are as-
sembled to build the final evidence.

6. IDEMIX PROOF-SPEC EXTENSIONS

Table Q] shows basic expression patterns that are theoretically
supported by the idemix library but cannot be expressed using the
current proof specification language. As we only need to slightly
change the languages proposed in [2] in order to provide a substan-
tial improvement to the overall system, we describe those changes

here. We provide an intuition on how to extend the idemix proof
specification language such that the concepts marked with a v/+in
TableRlare supported.

6.1 Generalized Issuance Process

The design of the proof specification considers a limited issuance
scenario, namely, it does not consider that a credential structure is
defined by an entity different from an issuer. As we presume that
multi-national organizations will specify the format of widely used
credentials, we need to specify credential structures independently
from issuer-related values. We attain this independence by remov-
ing the issuer public key from the credential structure and adding it
to each credential in a proof specification. The rational being that
a credential structure is independent from an issuer and only a cre-
dential, i.e., the instantiation of a credential structure, is linked to
the issuer.

6.2 Generalized Representations

Considering the definition of representations in [2]] we require a
set of extensions. More specifically we require that a representation
may (1) refer to other elements (e.g., commitments or representa-
tions) as its bases, (2) use constant exponents, and (3) re-use an
already defined representation object. We use the first and second
property to recursively build elements from arithmetic formulas in-
volving certified attributes as referred to in Section[5.2.2] The last
property is needed to establish an equality relation among differ-
ent representations, which can be used to establish the equality of
formulas.

For instance, assume that we need to prove that one attribute is
the product of two other attributes, i.e., a.b-c.d = e. f (cf. Line 8 of
Table[2). To realize this, we need to generate a commitment to each
of these attributes and then prove that the commitment to the third
attribute is equal to the commitments to the second attribute, raised
to power of the value of the first attribute, times the group element
used to randomize commitments raised to power of some integer
(the value of which is not of relevance). Similar to this example we
can implement more elaborate arithmetic expression by translating
them into commitments and representations.

6.3 Relation between U-Prove and Idemix

The signature schemes that underlie U-Prove and idemix are
similar. That is, they are both schemes that allow an issuer to
(blindly) sign messages where the messages are algebraically en-
coded as exponents of a representation of an element of an alge-
braic group. The selective disclosure of attributes is in both cases
realized by revealing some exponents (messages) and using a zero-
knowledge proof of knowledge of the undisclosed attributes. A
zero-knowledge proof can, as the name suggests, convince a veri-
fier of the fact that the prover holds some values without commu-
nicating any other information. The difference between the two
schemes is that they are based on different cryptographic assump-
tions and that, due to its cryptographic properties, a U-Prove signa-
ture can only be used once to in a proof (otherwise, the proof is no
longer zero-knowledge and transactions become linkable).

The advanced features that idemix provides are all realized with
cryptography that uses discrete-logarithms mechanisms. There-
fore, they can in principle also be employed for U-Prove if the U-
Prove specification [16] were modified accordingly. As a result the
specification will presumably become rather complex.

Alternatively, one could also embed U-Prove into the idemix
framework [18]]. As the idemix implementation treats different
cryptographic building blocks such as signature, commitment, and
verifiable encryption schemes as different modules and orchestrates



them guided by issuing and proof specifications (cf. Section [3.2),
the Brands signature scheme [5]] could be integrated as an alterna-
tive to the CL signature scheme [8].

7. IMPLEMENTATION

We have implemented the data-minimizing authentication frame-
work shown in Figure[Il In particular, we implemented the CARL
policy and the claim languages, the pre-evaluation aspect of com-
ponent (la) as well as the components (2a), (2c), (3a) and (3b).
Although the implementation is open for being used with any cre-
dential technology, the components (2c) and (3b) have been instan-
tiated with the evidence generation and verification mechanisms
that employ the idemix cryptographic library. Note that message
signatures and disclosure to third parties are currently not imple-
mented. All components of the framework have been released as
Open Source Software under the Eclipse Public License and are
available for download at http://www.primelife.eu, where also the
idemix cryptographic library is available.

We are currently working on the implementation of the claim se-
lection (2b) that presents the possible claims to the user so that she
can make a selection accordingly. Once this is finished, applica-
tions can be built that employ our framework for privacy-friendly
authentication. Building such an application could for instance be
realized by integrating our framework with an XACML access con-
trol engine. Ardagna et al.[1] give an intuition on how this could
be done.

8. CONCLUSION

We presented an important reason that hinders privacy-friendly
authentication to be used in practice today, namely, the lack of
a framework that utilizes privacy-friendly credential technologies,
such as anonymous credentials, for authentication purposes. In this
paper we describe all necessary components that allow for an im-
plementation of such framework. We propose a simple claim lan-
guage that provides adequate expressivity to address the core func-
tionality of anonymous credential systems. Further, we describe
how those functionalities are mapped to the concrete evidence spec-
ification languages of idemix and U-Prove.

We implemented the proposed framework and connected it to the
existing idemix implementation. We show how the latter should be
amended to attain the full expressivity of our claim language. Us-
ing our implementation has the following advantages, namely, (1)
users benefit from significantly increased more privacy, (2) service
providers gain in data quality due to the certified data being used,
and (3) service providers substantially reduce the risks associated
with holding large sets of sensitive information.

We envision to continue this trail of thought and provide a map-
ping from the claim language to SAML. By using SAML as WS-
Trust security token, our data-minimizing authentication scenario
may be implemented by means of current standards, which would
also benefit its adoption.

9. REFERENCES

[1] Claudio A. Ardagna, Sabrina De Capitani di Vimercati,
Gregory Neven, Stefano Paraboschi, Franz-Stefan Preiss,
Pierangela Samarati, and Mario Verdicchio. Enabling
Privacy-Preserving Credential-Based Access Control with
XACML and SAML. In Proc. of the Third IEEE TSP, 2010.

[2] Patrik Bichsel and Jan Camenisch. Mixing identities with
ease. In Evelyne De Leeuw, Simone Fischer-Hiibner, and
Lothar Fritsch, editors, IDMAN ’10, pages 1-17. Springer,
November 2010.

[3] Patrik Bichsel, Jan Camenisch, Franz-Stefan Preiss, and
Dieter Sommer. Dynamically-changing interface for
interactive selection of information cards satisfying policy
requirements. Technical Report RZ 3756, IBM Research
Zurich, 2009. domino.research.ibm.com/library/cyberdig.nsf.
Fabrice Boudot. Efficient proofs that a committed number
lies in an interval. In Bart Preneel, editor, EUROCRYPT ’00,
volume 1807 of LNCS, pages 431-444. Springer, 2000.
Stefan Brands. Rethinking Public Key Infrastructures and
Digital Certificates: Building in Privacy. MIT Press, 2000.
[6] Jan Camenisch and Thomas Gro8. Efficient attributes for
anonymous credentials. In Proc. 15th ACM CCS, pages
345-356. ACM Press, November 2008.

Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss,

Anna Lysyanskaya, and Mira Meyerovich. How to win the

clonewars: efficient periodic n-times anonymous

authentication. In Ari Juels, Rebecca N. Wright, and Sabrina

De Capitani di Vimercati, editors, Proc. 13th ACM CCS,

pages 201-210. ACM Press, 2006.

Jan Camenisch and Anna Lysyanskaya. Efficient

non-transferable anonymous multi-show credential system

with optional anonymity revocation. In Birgit Pfitzmann,
editor, EUROCRYPT ’01, volume 2045 of LNCS, pages

93-118. Springer, 2001.

Jan Camenisch, Sebastian Moedersheim, Gregory Neven,

Franz-Stefan Preiss, and Dieter Sommer. A Card

Requirements Language Enabling Privacy-Preserving Access

Control. In Proceedings of the 15th ACM Symposium on

Access Control Models and Technologies, 2010.

[10] Jan Camenisch and Victor Shoup. Practical verifiable
encryption and decryption of discrete logarithms. http://
eprint.iacr.org/2002/161, 2002.

[11] David Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Comm. of the ACM, 24(2):84-88,
February 1981.

[12] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley,
and W. Polk. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile.
RFC 5280 (Proposed Standard), May 2008. http://www.ietf.
org/rfc/rfc5280.txt.

[13] Amos Fiat and Adi Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In
Andrew M. Odlyzko, editor, CRYPTO ’86, volume 263 of
LNCS, pages 186-194. Springer, 1987.

[14] OASIS. Assertions and protocols for the OASIS security
assertion markup language (SAML) v2.0, 2005. http://docs.
oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf.

[15] OpenlD authentication 2.0, December 2007. http://openid.
net/developers/specs/.

[16] Christian Paquin. U-Prove cryptographic specification V1.1.
Technical report, Microsoft Corporation, February 2011.

[17] Christian Paquin. U-Prove WS-Trust Profile V1.0. Technical
report, Microsoft Corporation, February 2011.

[18] Security Team, IBM Research Zurich. Specification of the
identity mixer cryptographic library. IBM Research Report
RZ 3730, IBM Research Division, April 2010. http://domino.
research.ibm.com/library/cyberdig.nsf,

[19] K. Zeilenga. Lightweight Directory Access Protocol
(LDAP): Technical Specification Road Map. RFC 4510
(Proposed Standard), June 2006. http://www.ietf.org/rfc/
rfc4510.txt.

[4

—

[5

—

[7

—

[8

—

[9

—


http://www.primelife.eu
domino.research.ibm.com/library/cyberdig.nsf
http://eprint.iacr.org/2002/161
http://eprint.iacr.org/2002/161
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://openid.net/developers/specs/
http://openid.net/developers/specs/
http://domino.research.ibm.com/library/cyberdig.nsf
http://domino.research.ibm.com/library/cyberdig.nsf
http://www.ietf.org/rfc/rfc4510.txt
http://www.ietf.org/rfc/rfc4510.txt

	Introduction
	Preliminaries
	On-Line Credentials
	Certified Credentials

	Data-Minimizing Authentication
	CARL Policy Language
	Idemix Proof Specification
	Privacy Benefits

	Claim Handling
	Methods To Fulfill A Policy
	Claim Language
	Claim Generation
	Idemix Claim Restrictions
	U-Prove Claim Restrictions

	Claim Verification

	Evidence Handling
	Claim Building Blocks
	Idemix Evidence
	Generating Idemix Evidence
	Generating Attribute Predicate Evidence
	Verifying Idemix Evidence

	U-Prove Evidence

	Idemix Proof-Spec Extensions
	Generalized Issuance Process
	Generalized Representations
	Relation between U-Prove and Idemix

	Implementation
	Conclusion
	References

