

Anonymous Credentials on Java Card Patrik Bichsel, Jan Camenisch, Thomas Groß, Victor Shoup

Feasibility

Way Ahead

[Images from iStockPhoto.com]

Feasibility

Way Ahead

"Neil Armstrong's Footsteps are still there" (Robin Wilton, Sun Microsystems)

Anonymous Credentials: Attribute-based Access w/ Strong Security & Privacy

Private Credentials: How to Build Them

In the beginning...

showing a credential ...

showing a credential ...

containing statements "driver's license, age (as stated in driver's license) > 20, and insurance"

Using identity mixer, user can transform (different) token(s) into a new single one that, however, still verifies w.r.t. original signers' public keys.

Signature Scheme based on SRSA [CL01]

Public key of signer: RSA modulus **n** and a_i , b, d $\in QR_n$ Secret key: factors of **n**

To sign k messages m1, ..., mk $\in \{0,1\}^{\ell}$:

- [■] choose random prime e > 2^ℓ and integer s ≈ n
- compute c such that

$$d = a_1^{m1} \cdots a_k^{mk} b^s c^e \mod n$$

[SRSA CL-signature system introduced in Camenisch and Lysyanskaya '01. There exist alternative systems in elliptic curve settings, for instance with BBS-alike signatures.]

Signature Scheme based on SRSA [CL01]

A signature (c,e,s) on messages m1, ..., mk is valid iff:

m1, ..., mk
$$\in \{0,1\}^{\ell}$$
:
 $e > 2^{\ell}$
 $d = a_1^{m1} \cdot ... \cdot a_k^{mk} b^s c^e \mod n$

Theorem: Signature scheme is secure against adaptively chosen message attacks under Strong RSA assumption.

Proof of Knowledge of a CL Signature

Solution randomize c :

- Let c' = c b^{s'} mod n with random s'
- then d = c'^e
$$a_1^{m1} \dots a_k^{mk} b^{s*}$$
 (mod n) holds,
i.e., (c',e, s*) is a also a valid signature!

Therefore, to prove knowledge of signature on hidden msgs: provide c'

PK{(e, m1, ..., mk, s): $d = c'^{e} a_{1}^{m1} \cdot ... \cdot a_{k}^{mk} b^{s}$ $\wedge mi \in \{0,1\}^{\ell} \wedge e \in 2^{\ell+1} \pm \{0,1\}^{\ell}$

Privacy

Feasibility

Way Ahead

Vision: Smart Identity Card

Strong accountability and privacy

Sustainable secondary use

Trusted identity basis

Cost effective

Future-proof

[Independent proof point: Sterckx, Gierlichs, Preneel, Verbauwhede '09]

Run anonymous credential system autonomously and securely on a standard off-the-shelf Java Card.

Java Card* Limitations

8-bit CPU (3.57 MHz)

IC OF UTOPIA

 Limited access to public key-CP (only standard RSA, DSA)

Limited RAM (2K)

*: JCOP 41/v2.2

Java Card Structure

[Source: Prof. Wolfgang Reif - chip cards]

System Overview

Execution Times for a Full Proof (incl. Communication)

Modulus	1280 bit	1536 bit	1984 bit
Precomputation	5203 ms	7828 ms	13250 ms
Compute A'	2125 ms	2906 ms	5000 ms
Compute T1	3078 ms	4922 ms	8250 ms
Policy-dependent	2234 ms	2625 ms	3298 ms
Compute 1 response	562 ms	656 ms	828 ms
Total	7437 ms	10453 ms	16548 ms

[Avg. performance measurements with 100 experiments on JCOP 41/v2.2. A': credential blinding, T1: first stage of Sigma-proof commitment, response: Sigma-proof response]

Privacy

Technology

Way Ahead

Just Launched ABC4Trust Project

- EU FP 7 research project
- 13.5 Million EUR, 4 years
- 12 partners
 - •Goethe University Frankfurt
 - •Alexandra Institute
 - •Research Academic Computer Technology Institute
 - •IBM Research
 - •Lenio
 - Nokia Siemens Networks

Microsoft and IBM champion data privacy tool

By Declan McCullagh, CNET News, 31 January, 2011 12:40

NEWS A new pilot project from Microsoft and IBM offers a high-tech twist on a bit of common sense, by allowing people to divulge less information about themselves in order to protect their privacy.

- •Unabhängiges Landeszentrum für Datenschutz
- •Eurodocs
- CryptoExperts (SmartCards)
- Microsoft R&D France
- Municipality of Söderhamn
- •Technische Universität Darmstadt

ABC4Trust Goals

Achieve paradigm shift and interoperability in trustworthy infrastructures

- Establish abstraction and unification of different crypto algorithms.
- Create interaction flows, architecture & data formats as well as policies.
- Realize reference implementation.
- Validate concepts by real-world pilots in the eID space.
- Establish NG smart card implementation of anonymous credentials.
 - -Realization by CryptoExperts, lead by Pascal Paillier.
 - –Native SmartCard, direct access to crypto co-processor.

Privacy

Anonymous credentials: future-proof solution to minimal disclosure and attribute authentication

Feasibility

Technology feasible and practical: efficiently realizable on smart cards

Way Ahead

Anonymous credential systems to be harmonized, integrated into identity management systems

Resources

 This talk is based on P. Bichsel, J. Camenisch, T. Gross, V. Shoup. Anonymous Credentials on a Standard Java Card. ACM CCS 2009. Prof. V. Shoup is affiliated with the New York University and contributed to this work during a sabbatical at IBM Research – Zurich.

Identity Mixer Community: idemix.wordpress.com

- Download Identity Mixer Library 2.3.2
- Read Identity Mixer Specification 2.3.2
- http://prime.inf.tu-dresden.de/idemix/
- **PrimeLife:** www.primelife.eu
- **ABC4Trust:** www.abc4trust.de
- Email Jan or Thomas: {jca, tgr}[at]zurich.ibm.com